Abstract
The function of boundary temperature variation with time, f(t) is generally defined according to measured data. For f(t), which has a complicated expression, a corresponding one-dimensional heat conduction model was constructed under the first type of boundary conditions (Dirichlet conditions) in a semi-infinite domain. By taking advantage of the Fourier transform properties, a theoretical solution was given for the model, under the condition that f(t) does not directly participate in the transformation process. The solution consists of the product of erfc(t) and f(0) and the convolution of erfc(t) and the derivative of f(t). The piecewise linear interpolation equation of f(t), based on the measured data of temperature, was substituted into the theoretical solution, thus quickly solving the model and deriving a corresponding analytical solution. Based on the analytical solution under the linear decay function boundary condition, the inflection point method and curve fitting method for calculating the thermal diffusivity were introduced and exemplified, and the variation laws of the appearance moment of the inflection point were discussed. The obtained results show that the values of thermal diffusivity calculated by the two methods are basically consistent, and that the inflection point values rise with the increasing values of the initial temperature variation of the boundary, the decrease in boundary temperature velocity, and the distance from the boundary, respectively.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have