Abstract
Solutions of the second member of the Riccati chain and of the corresponding third order linear differential equation are related to solutions of the so-called Painlevé XXV–Ermakov equation via the Schwarzian derivative. The reduction to the generalised Ermakov equation is shown to arise naturally from the Painlevé XXV–Ermakov equation. Specifically, the first order system of ordinary differential equations, equivalent to the Painlevé XXV–Ermakov equation, is analysed by resolving points of indeterminacy of the vector field over P1×P1.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have