Abstract
BackgroundBronchial fibroblasts are the main structural cells responsible for extracellular matrix production and turnover in lung tissue. They play a key role in airway remodelling in asthma through different cytokines including interleukin (IL-6). ObjectiveTo decipher IL-6 signalling in bronchial fibroblasts obtained from severe eosinophilic asthmatics compared to mild asthmatics and healthy controls. MethodsHuman bronchial fibroblasts were isolated from bronchial biopsies of mild and severe eosinophilic asthmatics and non-atopic healthy controls. IL-6 was assessed by qRT-PCR and ELISA. Phosphorylated STAT3, SHP2 and p38/MAPK were evaluated by Western blot. Chemical inhibitors for SHP2 and p38 were used. Fibroblast proliferation was evaluated by BrdU incorporation test. ResultsIL-6 release was significantly increased in fibroblasts from mild and severe asthmatics compared to healthy controls. Fibroblasts from severe asthmatics showed a reduced STAT3 activation compared to mild asthmatics and healthy controls. Constitutive activation of phosphatase SHP2 was found to negatively regulate IL-6 induced STAT3 phosphorylation in fibroblasts from severe asthmatics. This effect was accompanied by a decrease in fibroblast proliferation rate due to the activated p38/mitogen-activated protein kinase. SHP2 and p38/MAPK specific inhibitors (PHPS1 and SB212190) significantly induce a restoration of STAT3 phosphorylation, IL-6 target gene expression and cell proliferation. ConclusionThese data show dysregulated IL-6 signalling in bronchial fibroblasts derived from severe eosinophilic asthmatic subjects involving the protein tyrosine phosphatase SHP2 and p38MAPK. Collectively, our data provides new insights into the mechanisms by which bronchial fibroblasts regulate airway remodelling in severe asthma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.