Abstract

Host proteins are the integral part of a successful infection caused by a given RNA virus pathogenic to plants. Therefore, identification of crucial host proteins playing an important role in establishing the infection process is likely to help in devising approaches to curbing disease spread. Cucumber mosaic virus (Q-CMV) and its satellite RNA (QsatRNA) are important pathogens of many economically important crop plants worldwide. In a previous study, we demonstrated the biological significance of a Bromodomain containing RNA-binding Protein (BRP1) in the infection cycle of QsatRNA, making BRP1 an important host protein to study. To further shed a light on the mechanistic role of BRP1 in the replication of Q-CMV and QsatRNA, we analyzed the Nicotiana benthamiana host protein interactomes either for BRP1 alone or in the presence of Q-CMV or QsatRNA. Co-immunoprecipitation, followed by LC–MS/MS analysis of BRP1-FLAG on challenging with Q-CMV or QsatRNA has led us to observe a shift in the host protein interactome of BRP1. We discuss the significance of these results in relation to Q-CMV and its QsatRNA infection cycle. Biological significanceHost proteins play an important role in replication and infection of eukaryotic cells by a wide-range of RNA viruses pathogenic to humans, animals and plants. Since a given eukaryotic cell typically contains ~30,000 different proteins, recent advances made in proteomics and bioinformatics approaches allowed the identification of host proteins critical for viral replication and pathogenesis. Although Cucumber mosaic virus (CMV) and its satRNA are well characterized at molecular level, information concerning the network of host factors involved in their replication and pathogenesis is still on its infancy. We have recently observed that a Bromodomain containing host protein (BRP1) is obligatory to transport satRNA to the nucleus. Consequently, it is imperative to apply proteomics and bioinformatics approaches in deciphering how host interactome network regulates the replication of CMV and its satRNA. In this study, first we established the importance of BRP1 in CMV replication. Then, application of co-immunoprecipitation in conjunction with LC–MS/MS allowed the identification of a wide range of host proteins that are associated with the replication of CMV and its satRNA. Interestingly, a shift in the plant proteome was observed when plants infected with CMV were challenged with its satRNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call