Abstract

We consider a boundary stabilization problem for the plate equation in a square. The feedback law gives the bending moment on a part of the boundary as function of the velocity field of the plate. The main result of the paper asserts that the obtained closed loop system is exponentially stable if and only if the controlled part of the boundary contains a vertical and a horizontal part of non-zero length (the geometric optics condition introduced by Bardos, Lebeau and Rauch in [2] for the wave equation is thus not necessary in this case). The proof of the main result uses the methodology introduced in Ammari and Tucsnak [1], where the exponential stability for the closed loop problem is reduced to an observability estimate for the corresponding uncontrolled system combined to a boundedness property of the transfer function of the associated open loop system. The second essential ingredient of the proof is an observability inequality recently proved by Ramdani, Takahashi, Tenenbaum and Tucsnak [7]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.