Abstract
Time series forecasting is an important time series data mining technique. Among them, multivariate time series (MTS) forecasting has received extensive attention in many fields. However, many existing MTS forecasting models usually rely on a large amount of labeled data for model training, and data collection and labeling are difficult in real systems. The insufficient amount of data makes it difficult for the model to fully learn the intrinsic patterns and features of the data, which not only increases the prediction error, but also makes it hard to obtain satisfactory prediction results. To address this challenge, we propose a shared multi-scale lightweight convolution generative (SMLCG) network for few-shot multivariate time series forecasting by using samples generation strategy. The overall goal is to design a shared multi-scale feature generation prediction framework that generates data highly similar to the original sample and enriches the training sample to improve prediction accuracy. Specifically, the MTS is divided into different scales, and the multi-scale feature fusion module is utilized to capture and fuse the MTS information in different spatial dimensions to eliminate the heterogeneity among the data. Then, the key information in the multi-scale features is captured by a lightweight convolution generative network, and the feature weights are dynamically assigned to explore the change information. In addition, a spatio-temporal memory module is designed based on the parameter sharing strategy to capture the spatio-temporal dynamic relationship of sequences by learning the common knowledge in multi-scale features, thus improving the robustness and generalization ability. Through comprehensive experiments on four publicly available datasets and comparisons with other reported models, it is demonstrated that the SMLCG model can efficiently generate approximate samples in the few-shot case and provide excellent prediction results. The architecture of SMLCG serves as a valuable reference for practical solutions to address the few-shot problem in multivariate time series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.