Abstract

Studies have shown that the expansion of the lateral ventricle is closely related to many neurodegenerative diseases, so the segmentation of the lateral ventricle plays an important role in the diagnosis of related diseases. However, traditional segmentation methods are subjective, laborious, and time-consuming. Furthermore, due to the uneven magnetic field, irregular, small, and discontinuous shape of every single slice, the segmentation of the lateral ventricle is still a great challenge. In this paper, we propose an efficient and automatic lateral ventricle segmentation method in magnetic resonance (MR) images using a multi-scale feature fusion convolutional neural network (MFF-Net). First, we create a multi-center clinical dataset with a total of 117 patient MR scans. This dataset comes from two different hospitals and the images have different sampling intervals, different ages, and distinct image dimensions. Second, we present a new multi-scale feature fusion module (MSM) to capture different levels of feature information of lateral ventricles through various receptive fields. In particular, MSM can also extract the multi-scale lateral ventricle region feature information to solve the problem of insufficient feature extraction of small object regions with the deepening of network structure. Finally, extensive experiments have been conducted to evaluate the performance of the proposed MFF-Net. In addition, to verify the performance of the proposed method, we compare MFF-Net with seven state-of-the-art segmentation models. Both quantitative results and visual effects show that our MFF-Net outperforms other models and can achieve more accurate segmentation performance. The results also indicate that our model can be applied in clinical practice and is a feasible method for lateral ventricle segmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.