Abstract

The development of ceramic composites with three‐dimensional fiber reinforcement architectures formed by textile methods has led to the potential for active shape‐morphing surfaces that can operate in high temperature and variable pressure environments. This technology is of particular interest for hypersonic applications, where SCRAM jet engines require variable inlet geometry to achieve efficient flight over realistic flight profiles and variable flight conditions. The experiments reported here show that significant shape morphing can be achieved and good control of the shape sustained even in the presence of large temperature and pressure gradients. Experiments were carried out using a subscale morphing hypersonic inlet with rectangular cross‐section in a Mach 8 wind tunnel facility with a total temperature of 800 K. The upper surface of the inlet consisted of a C–SiC composite plate (0.7 mm thick, 37.5 cm long, and 11 cm wide) connected to five actuators through a triangular truss support structure. The lower surface was a flat plate instrumented with an array of pressure taps along the flow centerline. As the shape varied, the surface contour was reliably controlled for high efficiency, low loss compression. A factor of six inlet area ratio variation was achieved and good agreement with model predictions was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.