Abstract
AbstractWe present an efficient new method for computing Mandelbrot‐like fractals (Julia sets) that approximate a user‐defined shape. Our algorithm is orders of magnitude faster than previous methods, as it entirely sidesteps the need for a time‐consuming numerical optimization. It is also more robust, succeeding on shapes where previous approaches failed. The key to our approach is a versor‐modulus analysis of fractals that allows us to formulate a novel shape modulus function that directly controls the broad shape of a Julia set, while keeping fine‐grained fractal details intact. Our formulation contains flexible artistic controls that allow users to seamlessly add fractal detail to desired spatial regions, while transitioning back to the original shape in others. No previous approach allows Mandelbrot‐like details to be “painted” onto meshes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.