Abstract
This work is devoted to present a generalized complex discrete fractional Gaussian map. Analytical and numerical analyses of the proposed map are conducted. The dynamical behaviors and stability of fixed points of the map are explored. The existence of fractal Mandelbrot and Julia sets is examined along with the corresponding fractal characteristics. The influences of the key parameters of the map and fractional order are examined. Moreover, nonlinear controllers are designed in the complex domain to control Julia sets generated by the map or to achieve synchronization between two Julia sets in master/slave configuration. Numerical simulations are provided to attain a deep understanding of nonlinear behaviors of the proposed map. Then, a suggested efficient chaos-based encryption technique is introduced by integrating the complicated dynamical behavior and fractal sets of the proposed map with the pseudo-chaos generated from the modified lemniscate hyperchaotic map.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.