Abstract
Information encryption platforms with reliable encryption performance, excellent mechanical performance, and high water retention capacity are highly desired. In this study, a tough double-network hydrogel is designed using the first network of a polyion complex containing lanthanide complexes via one-pot polymerization and the second network of a poly (N-hydroxyethyl acrylamide) (PHEAA) obtained by deep eutectic solvent (DES)-assisted introduction and subsequent photopolymerization. In this system, the pH-induced shape memory function and pH-/wavelength-dependent fluorescence allow the use of the prepared hydrogel as a dual-encryption platform. Owing to its high response reversibility, the hydrogel-based platform exhibits both a high security level and the advantages of rewritability, reprogrammability, and reusability. Additionally, the excellent mechanical properties and water retention capacity owing to the solvent exchange process involving the low-volatility solvent DES and the resulting introduction of the second network of PHEAA offer high practical application value for the hydrogel-based dual encryption platform, demonstrating its potential for information security protection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have