Abstract

This paper presents a novel hardware architecture of the Tensorial Support Vector Machine (TSVM) based on Shallow Neural Networks (NN) for the Single Value Decomposition (SVD) computation. The proposed NN achieves a comparable Mean Squared Error and Cosine Similarity to the widely used one-sided Jacobi algorithm. When implemented on an FPGA, the NN offers <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$324\times $ </tex-math></inline-formula> faster computations than the one-sided Jacobi with reductions up to 58% and 67% in terms of hardware resources and power consumption respectively. When validated on a touch modality classification problem, the NN-based TSVM implementation has achieved a real-time operation while consuming about 88% less energy per classification than the Jacobi-based TSVM with an accuracy loss of at most 3%. Such results offer the ability to deploy intelligence on resource-limited platform for energy-constrained applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call