Abstract

Reversible left ventricular failure was produced in conscious dogs by compromise of the coronary circulation. In animals with prior left anterior descending coronary artery occlusion, mean left atrial pressure (LAP) was incorporated into an automatic feedback control system used to inflate a balloon cuff on the circumflex (Cfx) coronary artery. The system could produce stable increases in LAP to 15-20 mm Hg. The dominating system transfer function was the ratio of LAP to balloon volume (BV), which was characterized by a fixed delay (5 s), with LAP/BV = (8e(-jomegatau ))/(0.02 + jomega). The system was stabilized by a phase lead network to reduce oscillations of LAP. A total of seven experiments were conducted in three dogs, and testing of inotropic agents was possible in three experiments under stable conditions with the pump off after an hour or more of operation. Problems encountered were 0.003-0.008 Hz oscillations in LAP in three experiments, which could usually be controlled by reducing the system gain. Late stage ventricular fibrillation occurred in all three animals, but defibrillation was easily accomplished after deflating the Cfx balloon. This system produces reversible left ventricular failure solely due to ischemia, thus closely simulating clinical heart failure due to coronary insufficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.