Abstract

The demand for cloud computing has increased manifold in the recent past. More specifically, on-demand computing has seen a rapid rise as organizations rely mostly on cloud service providers for their day-to-day computing needs. The cloud service provider fulfills different user requirements using virtualization - where a single physical machine can host multiple Virtual Machines. Each virtual machine potentially represents a different user environment such as operating system, programming environment, and applications. However, these cloud services use a large amount of electrical energy and produce greenhouse gases. To reduce the electricity cost and greenhouse gases, energy efficient algorithms must be designed. One specific area where energy efficient algorithms are required is virtual machine consolidation. With virtual machine consolidation, the objective is to utilize the minimum possible number of hosts to accommodate the required virtual machines, keeping in mind the service level agreement requirements. This research work formulates the virtual machine migration as an online problem and develops optimal offline and online algorithms for the single host virtual machine migration problem under a service level agreement constraint for an over-utilized host. The online algorithm is analyzed using a competitive analysis approach. In addition, an experimental analysis of the proposed algorithm on real-world data is conducted to showcase the improved performance of the proposed algorithm against the benchmark algorithms. Our proposed online algorithm consumed 25% less energy and performed 43% fewer migrations than the benchmark algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.