Abstract
Dynamic Virtual Machine (VM) consolidation is one of the most promising solutions to reduce energy consumption and improve resource utilization in data centers. Since VM consolidation problem is strictly NP-hard, many heuristic algorithms have been proposed to tackle the problem. However, most of the existing works deal only with minimizing the number of hosts based on their current resource utilization and these works do not explore the future resource requirements. Therefore, unnecessary VM migrations are generated and the rate of Service Level Agreement (SLA) violations are increased in data centers. To address this problem, our VM consolidation method which is formulated as a bin-packing problem considers both the current and future utilization of resources. The future utilization of resources is accurately predicted using a k-nearest neighbor regression based model. In this paper, we investigate the effectiveness of VM and host resource utilization predictions in the VM consolidation task using real workload traces. The experimental results show that our approach provides substantial improvement over other heuristic algorithms in reducing energy consumption, number of VM migrations and number of SLA violations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.