Abstract
This paper proposes a new algorithm for computing the stationary distribution vector in continuous-time upper block-Hessenberg Markov chains. To this end, we consider the last-block-column-linearly-augmented (LBCL-augmented) truncation of the (infinitesimal) generator of the upper block-Hessenberg Markov chain. The LBCL-augmented truncation is a linearly-augmented truncation such that the augmentation distribution has its probability mass only on the last block column. We first derive an upper bound for the total variation distance between the respective stationary distribution vectors of the original generator and its LBCL-augmented truncation. Based on the upper bound, we then establish a series of linear fractional programming (LFP) problems to obtain augmentation distribution vectors such that the bound converges to zero. Using the optimal solutions of the LFP problems, we construct a matrix-infinite-product (MIP) form of the original (i.e., not approximate) stationary distribution vector and develop a sequential update algorithm for computing the MIP form. Finally, we demonstrate the applicability of our algorithm to BMAP/M/$\infty$ queues and M/M/$s$ retrial queues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.