Abstract
In this paper, we introduce a Sequential Partial Linearization (SPL) algorithm for finding a solution of the symmetric Eigenvalue Complementarity Problem (EiCP). The algorithm can also be used for the computation of a stationary point of a standard fractional quadratic program. A first version of the SPL algorithm employs a line search technique and possesses global convergence to a solution of the EiCP under a simple condition related to the minimum eigenvalue of one of the matrices of the problem. Furthermore, it is shown that this condition is verified for a simpler version of the SPL algorithm that does not require a line search technique. The main computational effort of the SPL algorithm is the solution of a strictly convex standard quadratic problem, which is efficiently solved by a finitely convergent block principal pivoting algorithm. Numerical results of the solution of test problems from different sources indicate that the SPL algorithm is in general efficient for the solution of the symmetric EiCP in terms of the number of iterations, accuracy of the solution and total computational effort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.