Abstract
In this paper, we discuss the eigenvalue complementarity problem (EiCP) where at least one of its defining matrices is asymmetric. A sufficient condition for the existence of a solution to the EiCP is established. The EiCP is shown to be equivalent to finding a global minimum of an appropriate merit function on a convex set Ω defined by linear constraints. A sufficient condition for a stationary point of this function on Ω to be a solution of the EiCP is presented. A branch-and-bound procedure is developed for finding a global minimum of this merit function on Ω. In addition, a sequential enumerative algorithm for the computation of the minimum and the maximum eigenvalues is also discussed. Computational experience is included to highlight the efficiency and efficacy of the proposed methodologies to solve the asymmetric EiCP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.