Abstract

To address the problem of low filtering accuracy and divergence caused by unknown process noise statistics and local linearization in neural network state-space model, this paper proposes an adaptive process noise covariance particle filter algorithm for the radial basis function (RBF) networks. Using the algorithm, the evolution of the weights and centers of RBF networks is achieved sequentially in time by use of the extended Kalman particle filter algorithm, and the process noise covariance matrices are also obtained simultaneously by maximizing the evidence density function with respect to the process noise covariance matrices. Performance of the presented approach is evaluated by two function approximation problems. Experimental results show that the proposed approach obtains better prediction accuracy than other well-known training algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.