Abstract
Protein tertiary structures are known to be encoded in amino acid sequences, but the problem of structure prediction from sequence continues to be a challenge. With this question in mind, recent simulations have shown that atomic burials, as expressed by atom distances to the molecular geometrical center, are sufficiently informative for determining native conformations of small globular proteins. Here we use a simple computational experiment to estimate the amount of this required burial information and find it to be surprisingly small, actually comparable with the stringent limit imposed by sequence statistics. Atomic burials appear to satisfy, therefore, minimal requirements for a putative dominating property in the folding code because they provide an amount of information sufficiently large for structural determination but, at the same time, sufficiently small to be encodable in sequences. In a simple analogy with human communication, atomic burials could correspond to the actual "language" encoded in the amino acid "script" from which the complexity of native conformations is recovered during the folding process.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have