Abstract
Motivated by the need for improved platforms in biomedical research, this study addresses challenges associated with traditional Ussing chamber systems, widely used in studying biological barriers like the epithelial barrier of the gut. These challenges include complexity, high sample volumes, and limited compatibility. By combining stereolithography and soft lithography techniques, a microfluidic Ussing chamber is manufactured, overcoming these limitations, and incorporating compatibility with microscopy. Validation through Trans-Epithelial Electrical Resistance (TEER) measurements confirms its efficacy in assessing ion permeability dynamics, utilizing Caco-2 cell monolayers. The study showcases the capability of the manufactured chamber for sensing impact of calcium on tight junctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.