Abstract

In order to enhance the sensitivity of wafer-level vacuum-packaged electric field sensors, this paper proposed a vertical-resonant MEMS electric field sensor based on TGV (Through Glass Via) technology. The microsensor is composed of the electric field sensing cover, the drive cover, and the SOI-based microstructures between them. TGV technology is innovatively used to fabricate the electric field sensing cover and the vertically-driven cover. The external electric field is concentrated and transmitted to the area below the silicon plate in the center of the electric field sensing cover through a metal plate and a metal pillar, reducing the coupling capacitance between the silicon plate and the packaging structure, thereby achieving the enhanced transmission of the electric field. The sensitivity-enhanced mechanism of the sensor is analyzed, and the key parameters of the sensor are optimized through finite element simulation. The fabrication process is designed and realized. A prototype is tested to characterize its performance. The experimental results indicate that the sensitivity of the sensor is 0.82 mV/(kV/m) within the electrostatic electric field ranging from 0-50 kV/m. The linearity of the sensor is 0.65%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.