Abstract

A typical groundwater remedation problem is studied by using a combined simulation-optimization model. The management procedure employs groundwater flow and contaminant transport simulation models in conjunction with linear and quadratic programming techniques. The methodology is applied to the hydrodynamic control of a contaminant plume that has to be stabilized and removed by a system of pumping wells. The paper focuses mainly upon a sensitivity analysis to the aquifer transmissivity. The effect of changes in the transmissivities of a zoned aquifer upon the optimal solutions of the management problem is examined by considering the optimal pumping rates, the time to remediation and the pumped groundwater volume as the key output variables of the remediation strategies. In addition, the influence of the dispersivities and the imposed hydraulic gradient upon the same output variables is critically evaluated. The results of the study illustrate the need for uncertainty reduction in the knowledge of the hydrogeologic parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call