Abstract

We present an optical pressure sensor suitable for experiments in diamond anvil cell in the 0.1MPa–2GPa pressure range, for temperatures between ambient and 323K. It is based on the pressure-dependent fluorescence spectrum of FluoSpheres®, which are commercially available fluorescent microspheres commonly used to measure blood flow in experimental biology. The fluorescence of microspheres is excited by the 514.5nm line of an Ar+ laser, and the resulting spectrum displays three very intense broad bands at 534, 558, and 598nm, respectively. The reference wavelength and pressure gauge is that of the first inflection point of the spectrum, located at 525.6±0.2nm at ambient pressure. It is characterized by an instantaneous and large linear pressure shift of 9.93(±0.08)nm∕GPa. The fluorescence of the FluoSpheres® has been investigated as a function of pressure (0.1–4GPa), temperature (295–343K), pH (3–12), salinity, and pressure transmitting medium. These measurements show that, for pressures comprised between 0.1MPa and 2GPa, at temperatures not exceeding 323K, at any pH, in aqueous pressure transmitting media, pressure can be calculated from the wavelength shift of two to three beads, according to the relation P=0.100 (±0.001) Δλi(P) with Δλi(P)=λi(P)−λi(0) and λi(P) as the wavelength of the first inflection point of the spectrum at the pressure P. This pressure sensor is approximately thirty times more sensitive than the ruby scale and responds instantaneously to pressure variations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call