Abstract

In order to effectively improve the coupling efficiency of terahertz (THz) detectors, we design a grating-coupled structure on the high-resistivity silicon substrate for 0.2 THz to 0.35 THz band to enhance the ability of coupling terahertz signals. We simulated the electric field distribution of the grating-coupled structure in surface and inside by using the finite difference time domain (FDTD) method. The electric field in the central area of the silicon surface can be enhanced more than 4 times compared with the non-structure silicon substrate. We also simulated the Fabry-Perot cavity in the frequency range from 0.2 THz to 0.35 THz, and the electric field in the central area of the silicon surface can be improved one time compared with the non-structure silicon substrate. In addition, the electric field distribution on the silicon surface can be changed by adjusting parameters of the grating-coupled structure. When the period of the grating is 560 μm, the width of the gold is 187 μm, and the thickness of the silicon substrate is 720 μm, a 4.7 times electric field could be achieved compared with the non-structure silicon substrate at 0.27 THz and around. So, the simulation result shows that the grating-coupled structure has an obvious advantage compared with the Fabry-Perot cavity at THz coupling efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.