Abstract
The (PFEM) is employed to simulate orthogonal metal cutting of 42CD4 steel. The objectives of this work are mainly three: The first one is to validate PFEM strategies as an efficient tool for numerical simulation of metal cutting processes by a detailed comparison (forces, stresses, strains, temperature, etc.) with results provided by commercial finite element software (Abaqus, AdvantEdge, Deform) and experimental results. The second is to carry out a sensibility analysis to geometric and cutting conditions using PFEM by means of a Design of Experiments (DoE) methodology. And the third one is to identify the advantages and drawbacks of PFEM over FEM and meshless strategies.Also, this work identifies some advantages of PFEM that directly apply to the numerical simulation of machining processes: (i) allows the separation of chip and workpiece without using a physical or geometrical criterion (ii) presents negligible numerical diffusion of state variables due to continuous triangulation, (iii) is an efficient numerical scheme in comparison with FEM.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have