Abstract
An accurate and efficient finite difference method for solving the three dimensional incompressible Navier-Stokes equations on curvilinear grids is developed. The semi-staggered grid layout has been used in which all three components of velocity are stored on the corner vertices of the cell facilitating a consistent discretization of the momentum equations as the boundaries are approached. Pressure is stored at the cell-center, resulting in the exact satisfaction the discrete continuity. The diffusive terms are discretized using a second-order central finite difference. A third-order biased upwind scheme is used to discretize the convective terms. The momentum equations are integrated in time using a semi-implicit fractional step methodology. The convective and diffusive terms are advanced in time using the second-order Adams-Bashforth method and Crank-Nicolson method respectively. The Pressure-Poisson is discretized in a similar approach to the staggered gird layout and thus leading to the elimination of the spurious pressure eigen-modes. The validity of the method is demonstrated by two standard benchmark problems. The flow in driven cavity is used to show the second-order spatial convergence on an intentionally distorted grid. Finally, the results for flow past a cylinder for several Reynolds numbers in the range of 50–150 are compared with the existing experimental data in the literature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have