Abstract

Failure time data with a cured subgroup are frequently confronted in various scientific fields and many methods have been proposed for their analysis under right or interval censoring. However, a cure model approach does not seem to exist in the analysis of partly interval-censored data, which consist of both exactly observed and interval-censored observations on the failure time of interest. In this article, we propose a two-component mixture cure model approach for analyzing such type of data. We employ a logistic model to describe the cured probability and a proportional hazards model to model the latent failure time distribution for uncured subjects. We consider maximum likelihood estimation and develop a new expectation-maximization algorithm for its implementation. The asymptotic properties of the resulting estimators are established and the finite sample performance of the proposed method is examined through simulation studies. An application to a set of real data on childhood mortality in Nigeria is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.