Abstract
The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common strategy to model the cure probability is to assume a generalized linear model with a known link function, such as the logit link function. However, the logit model can only capture simple effects of covariates on the cure probability. In this article, we propose a new MCM where the cure probability is modeled using a decision tree-based classifier and the survival distribution of the uncured is modeled using an accelerated failure time structure. To estimate the model parameters, we develop an expectation maximization algorithm. Our simulation study shows that the proposed model performs better in capturing nonlinear classification boundaries when compared to the logit-based MCM and the spline-based MCM. This results in more accurate and precise estimates of the cured probabilities, which in-turn results in improved predictive accuracy of cure. We further show that capturing nonlinear classification boundary also improves the estimation results corresponding to the survival distribution of the uncured subjects. Finally, we apply our proposed model and the EM algorithm to analyze an existing bone marrow transplant data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.