Abstract

We develop a Bayesian semi-parametric approach to the instrumental variable problem. We assume linear structural and reduced form equations, but model the error distributions non-parametrically. A Dirichlet process prior is used for the joint distribution of structural and instrumental variable equations errors. Our implementation of the Dirichlet process prior uses a normal distribution as a base model. It can therefore be interpreted as modeling the unknown joint distribution with a mixture of normal distributions with a variable number of mixture components. We demonstrate that this procedure is both feasible and sensible using actual and simulated data. Sampling experiments compare inferences from the non-parametric Bayesian procedure with those based on procedures from the recent literature on weak instrument asymptotics. When errors are non-normal, our procedure is more efficient than standard Bayesian or classical methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.