Abstract

A study of variable-density homogeneous stationary isotropic turbulence based on the sparse direct-interaction perturbation (SDIP) and supporting direct numerical simulations (DNS) is presented. The non-solenoidal flow considered here is an example of turbulent mixing of gases with different densities. The spectral statistics of this type of flow are substantially more difficult to understand theoretically than those of the similar solenoidal flows. In the approach described here, the nonlinearly coupled velocity and scalar (which determine the density of the fluid) equations are expanded in terms of a normalised density ratio parameter. A new set of coupled integro-differential SDIP equations are derived and then solved numerically for the first-order correction to the incompressible equations in the variable-density expansion parameter. By adopting a regular expansion approach, one obtains leading-order corrections that are universal and therefore interesting in their own right. The predictions are then compared with DNS of forced variable-density flow with different density contrasts. It is found that the velocity spectrum owing to variable density is indistinguishable from that of constant-density turbulence, as it is supported by a wealth of indirect experimental evidence, but the scalar spectra show significant deviations, and even loss of monotonicity, as a function of the type and strength of the large-scale source of the mixing. Furthermore, the analysis helps clarify what may be the proper approach to interpret the power spectrum of variable-density turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call