Abstract
Large eddy simulation (LES) in homogeneous isotropic turbulence is performed by using the Finite element method (FEM) and Finite volume vethod (FVM) and the results are compared to show the performance of FEM and FVM numerical solvers. The validation tests are done by using the standard Smagorinsky model (SSM) and dynamic Smagorinsky model (DSM) for subgrid-scale modeling. LES is performed on a uniformly distributed 643 grids and the Reynolds number is low enough that the computational grid is capable of resolving all the turbulence scales. The LES results are compared with those from direct numerical simulation (DNS) which is calculated by a spectral method in order to assess its spectral accuracy. It is shown that the performance of FEM results is better than FVM results in this simulation. It is also shown that DSM performs better than SSM for both FEM and FVM simulations and it gives good agreement with DNS results in terms of both spatial spectra and decay of the turbulence statistics. Visualization of second invariant, Q, in LES data for both FEM and FVM reveals the existence of distinct, coherent, and tube-like vortical structures somewhat similar to those found in instantaneous flow field computed by the DNS. Keywords: Large eddy simulation; Validation; Smagorinsky model; Dynamic Smagorinsky model; Tube-like vortical structure; Homogeneous isotropic turbulence. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.DOI: 10.3329/jsr.v2i2.2582 J. Sci. Res. 2 (2), 237-249 (2010)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.