Abstract
BackgroundThe use of immunohistochemistry to quantify neural markers in various brain regions is a staple of neuroscience research. Numerous programs exist to automate quantification, but manual assignment of regions of interest (ROIs) within individual brain sections remains time consuming and can introduce interobserver variability. New methodWe have developed a novel open source FIJI-based immunohistochemical data analysis pipeline, Atlas-Based Analysis (ABA). ABA uses landmark-based image warping to adjust the experimental image to closely align with a published rat brain atlas. c-Fos positive cells are then quantified within predetermined ROI coordinates derived from the brain atlas. Image warping adjusts for natural variation in brain sections to ensure reliable alignment of ROIs for data analysis. This pipeline can be adapted for new atlases, landmarks, ROIs, and quantification measurements. ResultsABA permits rapid quantification of immunoreactivity in multiple ROIs and produces results with high levels of interobserver consistency. Comparison with existing methodsCompared to manual ROI designation, ABA reduces total analysis time by ∼70%. With correct use of landmarks for image warping, ABA produces similar results to manually drawn ROIs, results in no interobserver variability, and maintains c-Fos+ pixel dimensions. ConclusionsABA reduces time to obtain reliable results when performing automated immunoreactivity quantification and allows multiple users to analyze data without compromising the reliability of data obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.