Abstract

The manufacturing of composite structures is accompanied by fabrication induced deformations. Those deformations are undesirable and lead to transgression of geometric tolerances in the finished parts. In order to get the part within aspired dimensional tolerances, geometrical compensation of the tool is necessary. This often iterative conducted tooling-rework is commonly time consuming and costly. This paper presents an shell element based. semi-analytical simulation approach focusing on warpage deformations due to tool part interaction, in order to account for manufacturing induced deformations within the tool design process. Deviation measurements on test specimen level serve as inputs for the calculation of equivalent coefficients of thermal expansion according to the proposed analytical model. Thus, ‘warpage properties’ of different prepreg – tool–material combinations are determined. The use and the practicability of the developed approach is demonstrated by means of the calculation of a warpage compensated tool surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.