Abstract

The thermal swelling of rechargeable lithium-ion battery cells is investigated as a function of the charge state and the charge/discharge rate. The thermal swelling shows significant dependency on the state of charge and the charge rate. The thermal swelling follows a quadratic form at low temperatures, and shows linear characteristics with respect to temperature at high temperatures in free-swelling conditions. Moreover, the equivalent coefficient of thermal expansion is much larger than that of each electrode and host materials, suggesting that the separator and the complex shape of the cell play a critical role in thermal expansion. Based on the experimental characterization, a novel thermal swelling model is proposed. The model introduces an equivalent coefficient of thermal expansion for the cell and also considers the temperature distribution throughout the battery by using heat transfer theory. The comparison between the proposed model and experiments demonstrates that the model accurately predicts thermal swelling at a variety of charge/discharge rates during operation and relaxation periods. The model is relatively simple yet very accurate. Hence, it can be useful for battery management applied to prolong the cycle life of cells and packs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.