Abstract

The finite nuclear thickness affects the energy density (t) and conserved-charge densities such as the net-baryon density nB(t) produced in heavy ion collisions. While the effect is small at high collision energies where the Bjorken energy density formula for the initial state is valid, the effect is large at low collision energies, where the nuclear crossing time is not small compared to the parton formation time. The temperature T(t) and chemical potentials µ(t) of the dense matter can be extracted from the densities for a given equation of state (EOS). Therefore, including the nuclear thickness is essential for the determination of the T-µB trajectory in the QCD phase diagram for relativistic nuclear collisions at low to moderate energies such as the RHIC-BES energies. In this proceeding, we will first discuss our semi-analytical method that includes the nuclear thickness effect and its results on the densities є(t), nB(t), nQ(t), and nS(t). Then, we will show the extracted T(t), µB(t), µQ(t), and µS(t) for a quark-gluon plasma using the ideal gas EOS with quantum or Boltzmann statistics. Finally, we will show the results on the T-µB trajectories in relation to the possible location of the QCD critical end point. This semi-analytical model provides a convenient tool for exploring the trajectories of nuclear collisions in the QCD phase diagram.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.