Abstract
A significant share of structures includes the components that are in contact with each other. These include, for example, stamps, molds, machine tools, technological equipment, engines, etc. They are characterized by a varied load mode. Therefore, an important aspect in studying the stressed-strained state of such structures is to determine the dependence of contact pressure on the external forces applied to them. A superposition principle for contact problems is not applicable in a general case. However, for this type of structures, the linear dependence of contact pressure on the load level has been established. In this case, the contact area does not depend on the load level. It has been demonstrated that this pattern holds not only for a one-component but also for the multi-component load. As a result, the possibility for rapid determining the stressed-strained state of such structures is ensured, while maintaining the accuracy of the results obtained.The applicability of the constructed method has been demonstrated by using the machine tools’ clamping accessories as an example. The established patterns are important when estimating the designs of structures. The derived direct proportional dependence of the solution on the applied loads makes it possible to shorten the design time of structures with the elements that interact when they are in contact at surfaces of the matching shape. In this case, we have considered different sets of loads, as well as the various varying variants of these loads. The examined cases have confirmed the direct proportionality of the components of the stressed-strained state of the magnitude of the applied forces for the case of their coordinated change. It has been also shown under an uneven change in the individual components of loads the dependence of contact pressure and components of the stressed-strained state of the examined objects on the applied forces demonstrates a complex character different from the directly proportional relation. The established dependences underlie the substantiation of the design and technological parameters of the structures that are designed, as well as their operational modes
Highlights
A significant share of machine-building structures accounts for such of them whose composition includes parts that are in contact along the aligned surfaces
We have proposed a model of the stressed-strained state taking into consideration the contact interaction bet ween bodies along the aligned surfaces
This model is based on a variational statement
Summary
A significant share of machine-building structures accounts for such of them whose composition includes parts that are in contact along the aligned (congruent) surfaces These are, for example, the technological equipment (presses, machine tools, thermoplastic machines), technological equipment (tools, stamps, molds), engines, etc. To eliminate this contradiction for a separate class of structures, a new method has been proposed, which makes it possible to combine the advantages of the numerical and analytical modeling of the structures’ SSS. This task is re levant because resolving it would provide an opportunity to dramatically improve the efficiency of research into a wide class of structures
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Eastern-European Journal of Enterprise Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.