Abstract

Motivated by Fichera’s idea for regularizing the rank-deficiency model, we derive the free–free flexibility matrices by inverting the bordered stiffness matrix. The singular stiffness matrix of a free–free structure is expanded to a bordered matrix by adding n slack variables, where n is the nullity of the singular stiffness matrix. Besides, the corresponding n constraints are accompanied to result in a nonsingular matrix. The constraints filter out the homogeneous solution for the regularized solution. By inverting the nonsingular matrix, we can obtain the free–free flexibility matrix from the submatrices. The value of the extra degree of freedom shows the role of no solution (nonzero case) or infinite solution (zero case) with respect to the loading vector. After constructing the bordered system, the equilibrium of the specified force and the compatibility of the specified displacement can be tested according the zero slack variable. Similarly, the free–free flexibility matrix is obtained from the free–free stiffness matrix. Finally, four examples, a rod with symmetric stiffness, a plane truss, a beam and a bar with unsymmetric stiffness, were demonstrated to see the validity of the present formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.