Abstract

The rapid development of low-power consumption electronics and the possibility of harvesting energy from environmental sources can make totally autonomous wireless devices. Using piezoelectric materials to convert the mechanical energy into electrical energy for batteries of wireless devices in order to extend the lifetime is the focus in many researches in the recent years. It is important and efficient to improve the energy harvesting by designing an optimal interface between piezoelectric device and the load. In this paper, a self-powered piezoelectric energy harvesting device is proposed based on the velocity control synchronized switching harvesting on inductor technique (V–SSHI). Comparing to the standard full bridge rectifier technique, the synchronized switching harvesting on inductor (SSHI) technique can highly improve harvesting efficiency. However, in real applications when the energy harvesting device is associated with wireless sensor network (WSN), the SSHI technique needs to be implemented and requires being self-powered. The conventional technique to implement self-powered SSHI is to use bipolar transistors as voltage peak detector. In this paper, a new self-powered device is proposed, using velocity control to switch the MOSFET more accurately than in the conventional technique. The concept of design and the theoretical analysis are presented in detail. Experimental results are examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.