Abstract

ABSTRACT. As demands upon available water supplies increase, there is an accompanying increase in the need to assess the downstream consequences resulting from changes at specific locations within a hydrologic system. The problem is approached in this study by hybrid computer simulation of the hydrologic system. Modeling concepts are based upon the development of basic relationships which describe the various hydrologic processes. Within a system these relationships are linked by the continuity‐of‐mass principle. Spatial resolution is achieved by considering the modeled areas as a series of subbasins. The time increment adopted for the model is one month, so that time varying quantities are expressed in terms of mean monthly values. The model is general in nature and is applied to a particular hydrologic system through a programmed verification procedure whereby model coefficients are evaluated for the particular system. In this study the model is applied to the Bear River basin of western Wyoming, southern Idaho, and northern Utah. Comparisons between observed and computed outflow hydrographs show good agreement. The utility of the model is demonstrated by predicting the effects of various possible water resource management alternatives. The verified hybrid computer program can be digitized for application to the digital computer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.