Abstract

To develop hydrogen energy production and address the issues of global warming, inexpensive, effective, and long-lasting transition metal-based electrocatalysts for the synthesis of hydrogen are crucial. Herein, a porous electrocatalyst NiMo/Ni/NF was successfully constructed by a two-step electrodeposition process, and was used in the hydrogen evolution reaction (HER) of electrocatalytic water decomposition. NiMo nanoparticles were coated on porous Ni/NF grown on nickel foam (NF), leading to a resilient porous structure with enhanced conductivity for efficient charge transfer, as well as distinctive three-dimensional channels for quick electrolyte diffusion and gas release. Notably, the low overpotential (42 mV) and fast kinetics (Tafel slope of 44 mV dec-1) at a current density of 10 mA cm-2 in 1.0 M KOH solution demonstrate the excellent HER activity of the electrode, which was superior to that of recently reported non-noble metal-based catalysts. Additionally, NiMo/Ni/NF showed extraordinary catalytic durability in stability tests at a current density of 10 mA cm-2 for 70 h. The porous structure catalyst and the electrodeposition-electrocatalysis technique examined in this study offer new approaches for the advancement of the electrocatalysis field because of these benefits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.