Abstract

Abstract As promising solutions to condition-based maintenance of wind turbines, artificial intelligence-based techniques have drawn extensive attention in the era of industry 4.0. However, accurate fault detection is still challenging owing to volatile operating conditions in real-world settings. To handle this problem, a novel method is proposed for fault detection of wind turbines. Specifically, a data augmentation scheme is developed to simulate the effects of time-varying environments and noise. Then, a self-supervised proxy task of variant prediction is designed and conducted. In this way, valid data representations can be extracted to represent the health status of wind turbines. Additionally, the compactness of data representations is guaranteed by the directional evolution, which can relieve the confusion of health conditions. The effectiveness of the proposed method is verified with actual measurements. Using the proposed method, several faults can be detected more than 10 d earlier, and blade breakage can be identified more than 22 h earlier. Furthermore, the developed method outperforms several benchmark approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.