Abstract

Abstract In this paper, the cylindrical shock wave propagation in a perfectly conducting rotating mixture of micro size dust particles and van der Waal gas with magnetic field either axial or azimuthal and monochromatic radiation is investigated. The effect of thermal radiation is included in the energy equation of the governing system. In our study, it is assumed that the flux of radiation moves in the mixture of particles and real gas with invariable intensity and the shock wave is moving appositive to the direction of radiation heat flux and the energy is engrossed behind the cylindrical shock only. In the present model, dusty gas is assumed to be a mixture of micro size dust particles and van der Waal gas in which solid particles are continuously distributed and the equilibrium flow conditions are assumed to hold in the entire flow-field region. The effects of the particles’ density to the initial gas density ratio, the real gas effect, rotational parameter, the concentration of mass of the micro size dust particles in the conducting mixture, Alfven-Mach number and the adiabatic exponent on shock and on the physical variables such as velocity, density etc. are discussed. It is found that due to the rotating medium consideration or by an increase in small particles density to the initial gas density ratio, the shock wave strength increases. Also, it is significant to memorize that the strength of the shock wave decreases by an increase in the strength of initial magnetic field or gas non-ideal parameter or the adiabatic index.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call