Abstract

A self-powered photoelectrochemical (PEC) aptamer probe is presented for the determination of oxytetracycline (OTC). The assay is based on the use of g-C3N4 and NiO nanocrystals (NCs) which form a heterojunction. The latter was prepared by two-step hydrothermal pyrolysis by using the ionic liquid 1-hydroxyethyl-3-methylimidazole chloride which functions as a morphological template to form NiO NCs. The heterojunction exhibits much better electronic conductivity, wider absorption range, higher electron-hole-separation productivity, and stronger photocurrent compared to plain g-C3N4. The heterojunction was adopted to construct a self-powered PEC aptamer probe for OTC detection. An OTC-binding aptamer was immobilized on the heterojunction and the probe was constructed. The aptamer on the probe binding with OTC can form steric hindrance for transmitting of electrons and cause the PEC signal change depending on the OTC concentration. The photocurrent decreases with increasing OTC concentration in the 0.01 to 100nM concentration range and its detection limit is 4 pM (at S/N = 3). Graphical abstract Schematic representation of a self-powered photochemical aptamer probe. The probe performs enhanced ability for oxytetracycline (OTC) determination due to the formation of NiO nanocrystals/g-C3N4 (NiO NCs/g-C3N4) heterojunction and the specification recognition of the aptamer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.