Abstract
A self-organizing Takagi-Sugeno (TS)-type fuzzy network with support vector learning (SOTFN-SV) is proposed in this paper. The proposed SOTFN-SV is inspired by analysis of TS-type fuzzy systems and composite-kernel support vector machine (SVM). SOTFN-SV is a fuzzy system constructed by the hybridization of fuzzy clustering and SVM. The antecedent part of SOTFN-SV is generated via fuzzy clustering of the input data, and then SVM is used to tune the consequent part parameters to give the network better generalization performance. For demonstration, SOTFN-SV is applied to several classification problems, especially the skin color classification problem. In the skin color classification application, each color pixel is represented by hue and saturation (HS) color space. To represent color information by histogram as accurately as possible, a nonuniform partition of HS space is proposed. For comparison, SVMs and other fuzzy systems trained by SVM or neural networks are applied to the same classification problems. The advantages of SOTFN-SV are verified by comparisons with the results of these methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have