Abstract

This paper describes the feasibility study of applying a hybrid combination of Kohonen self organizing feature maps (SOM) and a rule based system in predicting the biomass of selected algae division (Chlorophyta) at tropical Putrajaya Lake (Malaysia). The system was trained and tested on an over five years of limnological time-series data sampled from Putrajaya Lake. Results from trained SOM were used to extract rules of relationships between input variables and the Chlorophyta biomass which was used to construct a rule based system. Selected input variables were water temperature, Secchi depth and nitrate nitrogen (NO3-N). The rules extracted conformed to findings as postulated in literatures. The overall rule based system yielded an accuracy of 73%. Key words: Kohonen self organizing feature maps, prediction, rule based system, chlorophyta.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.