Abstract

ABSTRACT Data-driven production scheduling and control systems are essential for manufacturing organisations to quickly adjust to the demand for a wide range of bespoke products, often within short lead times. This paper presents a self-learning framework that combines association rules and optimization techniques to create data-driven production scheduling. A new approach to predicting interruptions in the production process through association rules was implemented, using a mathematical model to sequence production activities in real or near real-time. The framework was tested in a case study of a ceramics manufacturer, updating confidence values by comparing planned values to actual values recorded during production control. It also sets a production corrective factor based on confidence value and success rate to avoid product shortages. The results were generated in just 1.25 seconds, resulting in a makespan reduction of 9% and 6% compared to two heuristics based on First-In-First-Out and Short Processing Time strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call