Abstract

A self-aligned fabrication process is presented by which phase-change material nanowire (NW) perfectly confined within metal electrode nanogap based on electron-beam lithography and inductively coupled plasma etching process. Lateral phase-change random access memory device fabrication is demonstrated by this process with Ge2Sb2Te5 NW confined within 39 nm tungsten electrode nanogap and the electrical characterizations are illustrated. It is found that the threshold current is only 2 μA and the dc power consumption is remarkably low. The process is simple, flexible and achieves localization filling. In addition, the process can be easily transferred to other types of phase-change and nanoelectronics materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call