Abstract

The zirconium isotope 93Zr is a long-lived pure β-particle-emitting radionuclide produced from 235U fission and from neutron activation of the stable isotope 92Zr and thus occurring as one of the radionuclides found in nuclear reactors. Due to its long half life, 93Zr is one of the radionuclides of interest for the performance of assessment studies of waste storage or disposal. Measurement of 93Zr is difficult owing to its trace level concentration and its low activity in nuclear wastes and further because its certified standards are not frequently available. A radiochemical procedure based on liquid–liquid extraction with 1-(2-thenoyl)-3,3,3-trifluoroacetone in xylene, ion exchange with Dowex resin and selective extraction using TRU resin has to be carried out in order to separate zirconium from the matrix and to analyze it by liquid scintillation spectrometry technique (LSC). To set up the radiochemical separation procedure for 93Zr, a tracer solution of 95Zr was used in order to follow the behavior of zirconium during the process by γ-ray spectrometry through measurement of the 95Zr. Then, the protocol was applied to low level waste (LLW) and intermediate level waste (ILW) from nuclear power plants. The efficiency detection for 63Ni was used to determination of 93Zr activity in the matrices analyzed. The limit of detection of the 0.05 Bq l−1 was obtained for 63Ni standard solutions by using a sample:cocktail ratio of 3:17 mL for OptiPhase HiSafe 3 cocktail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call