Abstract

BackgroundThe combination of the endocannabinoid system (ECS) and the type 2 cannabinoid receptor (CB2R) can activate various signal pathways, leading to distinct pathophysiological roles. This interaction has gained significant attention in recent research on fibrosis diseases. Focal adhesion kinase (FAK) plays a crucial role in regulating signals from growth factor receptors and Integrins. It is also involved in the transformation of fibroblasts into myofibroblasts. This study aims to investigate the impact of the CB2R agonist JWH133 on lung fibrosis and its potential to alleviate pulmonary fibrosis in mice through the FAK pathway.MethodsThe C57 mice were categorized into five groups: control, BLM, BLM + JWH133, BLM + JWH133 + NC, and BLM + JWH133 + FAK groups.JWH133 was administered to mice individually or in conjunction with the FAK vector. After 21 days, pathological changes in mouse lung tissues, inflammatory factor levels, hydroxyproline levels, and collagen contents were evaluated. Moreover, the levels of the FAK/ERK/S100A4 pathway-related proteins were measured.ResultsJWH133 treatment decreased inflammatory factor levels, attenuated pathological changes, and reduced extracellular matrix accumulation in the mouse model of bleomycin-induced pulmonary fibrosis; however, these effects were reversed by FAK. JWH133 attenuated fibrosis by regulating the FAK/ERK/S100A4 pathway.ConclusionsThe results presented in this study show that JWH133 exerts a protective effect against pulmonary fibrosis by inhibiting the FAK/ERK/S100A4 pathway.Therefore, JWH133 holds promise as a potential therapeutic target for pulmonary fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.